最近的工作表明,使用混合整数编程(MIP)求解器来优化神经网络(NNS)的某些方面的潜力。但是,用MIP求解器训练NNS的有趣方法尚未探索。训练NNS的最先进的方法通常基于梯度,需要大量数据,GPU计算以及广泛的超参数调整。相比之下,使用MIP求解器的培训不需要GPU或重型参数调整,但目前除了少量数据外无法处理任何事情。本文以最新的进步为基础,该进步使用MIP求解器训练NNS。我们通过制定新的MIP模型来超越当前的工作,从而提高训练效率,并可以培训重要的整数值为值的神经网络(INNS)。我们提供了两种新型方法,以进一步使用MIP训练NNS的潜在意义。第一种方法在训练时优化了NN中神经元的数量。这减少了在培训之前确定网络体系结构的需求。第二种方法解决了MIP可以处理的训练数据量:我们提供了一种批处理培训方法,该方法可大大增加MIP求解器可以用来训练的数据量。因此,我们为使用MIP模型训练NNS时提供了比以前更多的数据的有希望的步骤。关于两个现实世界中数据限制数据集的实验结果表明,就准确性,训练时间和数据数量而言,我们的方法在用MIP训练NN中强烈优于先前的最新技术。当可获得最小的培训数据以及具有最小内存要求的培训时,我们的方法精通培训NNS,这对于部署到低内存设备而言可能是有价值的。
translated by 谷歌翻译
符合使用机器学习的不断增长的趋势,帮助解决组合优化问题,一个有希望的想法是通过使用学习的策略来改善混合整数编程(MIP)分支和绑定树内的节点选择。以前使用模仿学习的工作指示通过学习自适应节点搜索顺序来获取节点选择策略的可行性。相比之下,我们的模仿学习策略仅专注于学习节点的孩子中的哪一个选择。我们介绍了一个脱机方法,用于在两个设置中学习这样的策略:一个通过致力于修剪节点的启发式;一个是从叶子精确和背溯以保证找到最佳整数解决方案的备用。前一个设置对应于困扰期间的儿童选择器,而后者则类似于潜水启发式。我们在热情和确切的设置中将策略应用于流行的开源求解器SCIP。五个MIP数据集的经验结果表明,我们的节点选择策略比文献中最先进的先例更快地导致解决方案。虽然我们在精确解决方案的时间内没有击败高度优化的SCIP状态基准节点选择器,但如果预测模型的准确性足够,我们的启发式政策比所有基线都具有始终如一的最佳最优性差距。此外,结果还表明,当应用时间限制时,我们的启发式方法发现比测试大多数问题中所有基线的更好的解决方案。我们通过表明学习的政策模仿了SCIP基线来解释结果,但没有后者早期的暴跌中止。我们的建议是,尽管对文献的清晰改进,但这种MIP儿童选择器在更广泛的方法中更好地使用MIP分支和束缚树决策。
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
Sign language is the preferred method of communication of deaf or mute people, but similar to any language, it is difficult to learn and represents a significant barrier for those who are hard of hearing or unable to speak. A person's entire frontal appearance dictates and conveys specific meaning. However, this frontal appearance can be quantified as a temporal sequence of human body pose, leading to Sign Language Recognition through the learning of spatiotemporal dynamics of skeleton keypoints. I propose a novel, attention-based approach to Sign Language Recognition exclusively built upon decoupled graph and temporal self-attention: the Sign Language Graph Time Transformer (SLGTformer). SLGTformer first deconstructs spatiotemporal pose sequences separately into spatial graphs and temporal windows. SLGTformer then leverages novel Learnable Graph Relative Positional Encodings (LGRPE) to guide spatial self-attention with the graph neighborhood context of the human skeleton. By modeling the temporal dimension as intra- and inter-window dynamics, I introduce Temporal Twin Self-Attention (TTSA) as the combination of locally-grouped temporal attention (LTA) and global sub-sampled temporal attention (GSTA). I demonstrate the effectiveness of SLGTformer on the World-Level American Sign Language (WLASL) dataset, achieving state-of-the-art performance with an ensemble-free approach on the keypoint modality.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multimodal models are becoming increasingly effective, in part due to unified components, such as the Transformer architecture. However, multimodal models still often consist of many task- and modality-specific pieces and training procedures. For example, CLIP (Radford et al., 2021) trains independent text and image towers via a contrastive loss. We explore an additional unification: the use of a pure pixel-based model to perform image, text, and multimodal tasks. Our model is trained with contrastive loss alone, so we call it CLIP-Pixels Only (CLIPPO). CLIPPO uses a single encoder that processes both regular images and text rendered as images. CLIPPO performs image-based tasks such as retrieval and zero-shot image classification almost as well as CLIP, with half the number of parameters and no text-specific tower or embedding. When trained jointly via image-text contrastive learning and next-sentence contrastive learning, CLIPPO can perform well on natural language understanding tasks, without any word-level loss (language modelling or masked language modelling), outperforming pixel-based prior work. Surprisingly, CLIPPO can obtain good accuracy in visual question answering, simply by rendering the question and image together. Finally, we exploit the fact that CLIPPO does not require a tokenizer to show that it can achieve strong performance on multilingual multimodal retrieval without
translated by 谷歌翻译
Federated learning (FL) is an emerging machine learning paradigm, in which clients jointly learn a model with the help of a cloud server. A fundamental challenge of FL is that the clients are often heterogeneous, e.g., they have different computing powers, and thus the clients may send model updates to the server with substantially different delays. Asynchronous FL aims to address this challenge by enabling the server to update the model once any client's model update reaches it without waiting for other clients' model updates. However, like synchronous FL, asynchronous FL is also vulnerable to poisoning attacks, in which malicious clients manipulate the model via poisoning their local data and/or model updates sent to the server. Byzantine-robust FL aims to defend against poisoning attacks. In particular, Byzantine-robust FL can learn an accurate model even if some clients are malicious and have Byzantine behaviors. However, most existing studies on Byzantine-robust FL focused on synchronous FL, leaving asynchronous FL largely unexplored. In this work, we bridge this gap by proposing AFLGuard, a Byzantine-robust asynchronous FL method. We show that, both theoretically and empirically, AFLGuard is robust against various existing and adaptive poisoning attacks (both untargeted and targeted). Moreover, AFLGuard outperforms existing Byzantine-robust asynchronous FL methods.
translated by 谷歌翻译
Training large, deep neural networks to convergence can be prohibitively expensive. As a result, often only a small selection of popular, dense models are reused across different contexts and tasks. Increasingly, sparsely activated models, which seek to decouple model size from computation costs, are becoming an attractive alternative to dense models. Although more efficient in terms of quality and computation cost, sparse models remain data-hungry and costly to train from scratch in the large scale regime. In this work, we propose sparse upcycling -- a simple way to reuse sunk training costs by initializing a sparsely activated Mixture-of-Experts model from a dense checkpoint. We show that sparsely upcycled T5 Base, Large, and XL language models and Vision Transformer Base and Large models, respectively, significantly outperform their dense counterparts on SuperGLUE and ImageNet, using only ~50% of the initial dense pretraining sunk cost. The upcycled models also outperform sparse models trained from scratch on 100% of the initial dense pretraining computation budget.
translated by 谷歌翻译
Classifiers in supervised learning have various security and privacy issues, e.g., 1) data poisoning attacks, backdoor attacks, and adversarial examples on the security side as well as 2) inference attacks and the right to be forgotten for the training data on the privacy side. Various secure and privacy-preserving supervised learning algorithms with formal guarantees have been proposed to address these issues. However, they suffer from various limitations such as accuracy loss, small certified security guarantees, and/or inefficiency. Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data. Given a pre-trained encoder as a feature extractor, supervised learning can train a simple yet accurate classifier using a small amount of labeled training data. In this work, we perform the first systematic, principled measurement study to understand whether and when a pre-trained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms. Our key findings are that a pre-trained encoder substantially improves 1) both accuracy under no attacks and certified security guarantees against data poisoning and backdoor attacks of state-of-the-art secure learning algorithms (i.e., bagging and KNN), 2) certified security guarantees of randomized smoothing against adversarial examples without sacrificing its accuracy under no attacks, 3) accuracy of differentially private classifiers, and 4) accuracy and/or efficiency of exact machine unlearning.
translated by 谷歌翻译